
A parallel dynamic compiler for CIL bytecode

Simone Campanoni, Giovanni Agosta, Stefano Crespi Reghizzi

February 11, 2008

Abstract

Multi-core technology is being employed in most recent high-performance
architectures. Such architectures need specifically designed multi-threaded
software to exploit all the potentialities of their hardware parallelism.

At the same time, object code virtualization technologies are achieving
a growing popularity, as they allow higher levels of software portability
and reuse.

Thus, a virtual execution environment running on a multi-core proces-
sor has to run complex, high-level applications and to exploit as much as
possible the underlying parallel hardware. We propose an approach that
leverages on CMP features to expose a novel pipeline synchronization
model for the internal threads of the dynamic compiler.

Thanks to compilation latency masking effect of the pipeline organiza-
tion, our dynamic compiler, ILDJIT, is able to achieve significant speedups
(26% on average) with respect to the baseline, when the underlying hard-
ware exposes at least two cores.

1 Introduction

This paper reports the project of a new dynamic translator and optimizer (DTO)
1 for the widespread Common Intermediate Language (CIL), the directly inter-
pretable representation of the Common Language Infrastructure (CLI), stan-
dardized as ECMA 335 and ISO/IEC 23271:2006 [8].

The current name of the project is ILDJIT. It is released under GPL li-
cense through Sourceforge. Most existing DTOs have been designed for single-
processor machines and their performances when moving to multi-processor or
multi-core machines are likely to be suboptimal. Our project from the very
start focused on multi-processors and aimed at offering a complete framework
to study the different components of a dynamic compiler and their interactions
in such environments. We believe our experience should be of interest to any-
one considering porting or designing a virtual machine and dynamic compiler
for a directly interpretable representation (such as CIL or Java bytecode) to a
multi-processor architecture.

1We refer to the classification and terminology for dynamic compilers proposed by Rau [15]
and Duesterwald [7]

1

It is obvious that on a computer with more processors than application
threads, the DTO can run uninterrupted on a processor, so that many compila-
tion/application balancing problems found on single processor machine simply
disappear. According to Kulkarny et al. 2007 [12]

little is known about changes needed in balancing policy tuned
on single-processor machines to optimize performances on multi-
processor platforms. . . . it is a common perception that the controller
could (and should) make more aggressive optimization decision to
make use of the available free cycles. Aggressiveness in this context
can imply compiling early, or compiling at higher optimization levels.

We shared the same intuition, and, in order to take full advantage of the high
degree of parallelism of future platforms, we designed the DTO as a parallel dis-
tributed program. Compiler parallelism is manifold. First, the compiler phases
are organized as a pipeline so that several CIL methods can be simultaneously
compiled by different compilation phases.

Second, since many kinds of optimizations are applied in static compilers,
and it is not a priori known which of them are more effective in a dynamic
setting, we decided to design separate optimizers as processes running on a
common intermediate representation.

Third, the DTO software architecture ought to be flexible and open to an
unpredictable number of new modules, as the project progresses and experience
tells us which optimizations are productive for which applications. Moreover
flexibility is needed to choose the most performing solution from a set of alter-
native algorithms, depending on the application profile and needs: an example
is garbage collection for dynamic memory allocation, where our system has four
supports to automatically choose from.

To obtain flexibility and modularity most DTO modules are implemented
as plugins.

One could fear that a compiler implemented as a distributed and dynami-
cally linkable program would have to pay a high overhead, to the point that the
benefit from hardware parallelism might be offset especially for a small number
of processors. On the contrary our early experiments show that the perfor-
mance of applications compiled by our DTO are comparable to some of the best
known dynamic compilers, on a single processor machine, and superior on multi
processor platforms.

As we have implemented just a few basic optimization processes in our cur-
rent release, we expect much improvements will come as we enrich the optimiza-
tion set and we gain experience on the policy for triggering optimizations.

In this paper we report on single-thread applications, as the support for
multiple C# and Java threads is under development. The paper is organized
as follows. In Section 2 we outline the execution model of ILDJIT dynamic
compiler. In Section 3 we outline the DTO architecture, the intermediate rep-
resentation and explain the parallel organisation of the compiler. Some finely
tuned modules of the compiler are also described. In Section 4 we report the
experiments and how they allowed us to tune performances and improve on

2

the overall DTO structure. Some benchmarks are compared with other CIL
systems. The conclusion lists on going developments and future plans.

2 Execution model

ILDJIT implements the Virtual Execution System (VES) leveraging on a Just-
In-Time compiler for obvious performance reasons. The primary task is to
translate each piece of CIL bytecode to a semantically equivalent target code
to be directly executed by the hardware; ILDJIT adopts an intermediate repre-
sentation called IR to support this translation.

2.1 Translation unit

Choosing the correct granularity for the translation process is especially impor-
tant in a dynamic compiler [7]. A larger translation unit may provide additional
optimisation opportunities, but also imposes a higher risk of compiling code that
will not be executed. On the other hand, a smaller translation unit allows the
compiler to output the translated code earlier, but heavily limits optimisation,
forcing the compiler to generate additional code to cope with frequent interrup-
tions of execution. Specifically, if the unit is smaller than an entire function or
method, then the computation state must be explicitly saved when switching
between parts of a function that belong to different compilation units. This is
not needed if the unit is composed of one or more functions, since the function
call boundary naturally defines a state to be preserved across the call (param-
eters and return values), while most of the local state can be destroyed (local
variables of the callee). Other advantages that make the CIL method a good
candidate for the role of translation unit are specific to the CLI. The metadata
stored inside each CIL bytecode file assume the method as the main compila-
tion unit, so that most information (local variables, stack size) is stored in a
method-wise fashion.

Therefore ILDJIT uses the method as its translation unit. The choice of
larger units is possible, and can be effectively achieved by method inline pass
plugin.

2.2 Intermediate representation

ILDJIT has to optimize application code over different processing units (PU),
which communicate using communication channels like shared memory or TCP/IP.

To this end, ILDJIT must sometimes move code across different PUs which
may be connected through slow communication channels. Clearly, communica-
tion costs should be minimized. Next we explicit the rationale for adopting IR
as internal program representation shared on these communication channels.

CIL is not a good candidate for the internal representation of methods be-
cause the information needed to completely describe a method is spread on the
metadata of its CIL container which also describes many other aspects of the

3

entire program. Moreover, CIL provides a very compact representation of an
entire program, but forces the compiler to access this representation in many
unrelated points to collect the information needed by a single method. Nor
would any machine code be a good candidate, as it would be too hardware
specific. The translation cost for mapping a machine code onto a very different
one would be unwarranted. It is well known from static compilation experience
that many optimizing transformations are better performed on an intermediate
representation than on machine code; the same reasons apply here.

We have therefore designed our own IR language, with two aims: first,
to provide a very compact representation of individual methods by removing
the dependences on CIL metadata streams; second, to offer a machine-neutral,
register-based language, such that each construct has a clear and simple mean-
ing. This has the advantage that optimizing transformations that rewrite IR
are easy to specify and implement.

Translation is therefore split in two phases: first the CIL fragment is trans-
lated into IR, then IR is translated into the target machine code. Consider a
method composing the CIL program given as input to the ILDJIT compiler.
The method can be in the following non-overlapping translation states: CIL,
IR, MACHINECODE and EXECUTABLE. A method is in CIL state, if it is
present only in the CIL language; otherwise, if a method is in the IR state, it is
present both in CIL language and in IR. In MACHINECODE state, a method is
present in CIL, IR, and in the target machine code. Finally in EXECUTABLE
state, the method is present in CIL, IR, and machine code and all the static
memory used by it is allocated and initialised. To change its translation state,
a method traverses the software pipeline next described in 2.3.

2.3 Compilation pipeline

Translations, optimization and execution of CIL code is managed by an internal
software pipeline, designed to exploit hardware parallelism at various levels. To
this end, compilation and execution phases are performed in parallel. Moreover
ILDJIT exploits pipeline parallelism, to add another dimension of parallelism
between compilation, optimisations, and execution phases.

In traditional Just-In-Time compilers, when execution jumps to a method
not yet available in machine code, it pauses and translates it. Our dynamic
compiler, given sufficient hardware resources, can produce methods in machine
code before execution of the CIL program asks for them. In this case, program
execution does not need to be paused to switch to compilation; the execution
profile matches that of a statically compiled program in the optimal case.

The pipeline model exposes five stages as shown in Figure 1 and explained
in details in Section 3. All stages can be parallelized, if hardware resources
are available. Each pipeline stage can be performed by several parallel threads,
possibly running on different PUs’, in order to simultaneously translate several
CIL code pieces to IR. Similarly several translation steps from IR to machine
code may run in parallel. The pipeline model is implemented by the Pipeliner
module (see Section 3.4).

4

Figure 1: The translation pipeline model: on the left, the translation pipeline
stages; on the right, the modules that implement the various stages; in the
rounded boxes the state of the method code at the beginning of each stage

5

2.4 Linking

Since the entire program is not translated to target code at once, every dy-
namic compiler has the following linking problem: how to handle invocations of
methods not yet translated. In this respect our DTO is rather classical. ILDJIT
redirects invocations to the internal Execution engine module (see Section 3.3.2),
which then calls the right internal modules responsible for translation; after that,
it can re-link the freshly translated method to the rest of the program. This
redirection mechanism is known as a trampoline. ILDJIT resolves the linking
problem by a lazy compilation [11].

Note that a trampoline has to be transparent to both caller and callee. While
the caller is not supposed to perform any special check in passing parameters,
the callee should not worry about the return value and the return address. The
need for having different trampolines for each method (as opposed to a single
dispatch function in static compilation) comes from this principle.

2.5 Precompilation

As explained above, ILDJIT can prefetch CIL methods to translate and optimize
them before their execution is demanded by the application. A critical decision
is which method to compile ahead of time. Our simple yet effective selection
criterion is based on method distance. We define the distance of a method Mi

from the method currently in execution, as the shortest path over the call graph
between Mi and the latter method.

ILDJIT monitors the executing CIL method and computes the distance to
other methods composing the application. All the CIL methods within a thresh-
old D distance from the current method are candidates for translation and opti-
mization. The rational of the distance based selection criterion is rather obvious:
a method at near to zero distance will be probably required in the near future
for execution, therefore it should be promptly translated to machine code to
avoid a trampoline stall. Conversely methods at greater distance not only are
in no hurry for being translated, but have low probability of being requested in
the future, because the call graph chain ignores conditions. The threshold D is
adjusted at runtime depending on available free PUs’.

We define the precompilation frontier as the portion of the call graph of
the application code, which has the following meaning: it includes the next
candidate methods for compilation and optimization tasks. The precompilation
frontier is a dynamic set, moving along with the executing method at a distance
depending on the threshold D and available system resources. An example of
precompilation frontier and of its adaptation to the evolution of the execution
of the application is shown in Figure 2; in this example the system resources
available are considered constant as the threshold D.

As more PUs become available, the precompilation frontier widens; a large
frontier means ILDJIT compiles ahead of time many methods and then the
probability of spending time inside the trampolines decreases. An example of
precompilation frontier and of its adaptation to the system resources available

6

Figure 2: Adaptation of the precompilation frontier to the execution of the
application code; the executing methods are in order: Main, m3, m4, m5; the
threshold D is 2, constant.

Figure 3: Precompilation frontier with adaptive threshold D; D evolves from 2
to 3; the executing methods are in order: Main, m3.

is shown in Figure 3.

2.6 Optimizations

ILDJIT allows optimizations both at IR and target code level. The rational is
based on the observation that all the semantic information of the source program
is available, higher-level transformation are easier to apply. For instance, array
references are clearly distinguishable, instead of being a sequence of low-level
address calculations [4]. An instance of transformation that is useful at each
levels are the loop-invariant code motion; it can be applied at a IR level to
expressions or at a target code level to address computations. The latter is
particularly relevant when indexing multidimensional arrays [4].

Since different algorithms for code optimization use particular features of

7

the underlying hardware, ILDJIT can optimise the code that is going to be
executed at the IR level, making a translation from and to the IR language, and
at the target machine code level, making a translation from and to the target
machine code.

IR to IR optimizers run as independent threads possibly on different PUs’,
or even on different machines connected by an IP network.

The decisions about when, where and how much to optimise each CIL
method are taken based on the method distance concept (see Section 2.5).

In the future we expect to use profiling for identifying methods containing
hot spots, as the first candidates for aggressive optimization.

3 Software architecture

The execution model described in Section 2 and shown in Figure 1 is imple-
mented in the ILDJIT modular software architecture, composed by the following
main blocks:

Bootstrapper This is the first module executed at ILDJIT system startup
time; it provides initialisation services for all system components.

Pipeliner implements and manages the software pipeline needed for transla-
tions, optimisations, and execution of CIL bytecode.

CLI Manager provides the functionalities needed to implement the CLI archi-
tecture, including the translator of the CIL bytecode, the layout manager
for the CIL objects, the CIL core libraries and the loader/decoder of the
CIL files.

Optimizer implements the optimising transformations of IR methods.

IR virtual machine It is the core module, responsible for translating IR code
to machine code, and for running the target code.

Garbage collector All memory used by ILDJIT , both in execution and com-
pilation phases, is allocated and managed by this component.

Threads manager This module manages the CIL threads by grouping and
scheduling them on PUs.

Policies This module implements various policies that ILDJIT has to use inside
dynamic compilation phases (e.g. optimization policy).

Profiler Profiling functionalities for the various modules of ILDJIT dynamic
compiler are provided by this module.

Tools All generic tools exploited by the ILDJIT dynamic compiler are imple-
mented inside this module.

8

Figure 4: Class diagram of ILDJIT system

For a complete description see [1]. The dependences between the ILDJIT’s
modules are shown in Figure 4. The dependences to the Tools, to the Profiler
and to the Garbage collector are left implicit.

Each main block is further modularised, though different approaches to mod-
ularisation have been chosen, depending on the typical use of a module:

Dynamically loaded shared library This choice gives the highest degree of
flexibility, allowing the module to be loaded at runtime, if available. It is
therefore employed for all components that can be freely replaced, added
or removed from the system. Our dynamic compiler is designed to be
easily extendible: the use of dynamically loaded shared libraries allow
the implementation of a plugin framework, making the dynamic compiler
customisable for a specific application domain [14] (e.g. for multimedia
component).

Statically loaded shared library Some core components need to be present
at all times in the system, yet they are used by several subsystems that
can run on different processors. In this case, statically loaded shared
libraries allow a good degree of flexibility, while removing unnecessary
loading overheads [14].

Internal module Core components that are not shared between subsystems
are implemented as static libraries for maximum efficiency.

The rest of this Section describes in greater details the most significant modules.

3.1 CLI manager

The CLI manager has the task of managing the CIL bytecode as specified by
the ECMA-335 standard [8]; for this task it has to: load and decode the CIL
files; translate CIL methods to our IR language; layout the instances of the CIL
classes; and provide the implementations of the various internal calls of the C#

9

Figure 5: Class diagram of the CLI manager module

base class library. The software architecture of the CLI manager is shown in
Figure 5.

The loading and decoding tasks of the CIL files are performed using external
modules (plugins) since these tasks can be implemented in many different ways
with different pros and cons. ILDJIT currently includes two such plugins: the
ECMA decoder, and the Embedded ECMA decoder. The first plugin uses a
full caching policy for the decoded information, thus decoding every file only
once. The embedded ECMA decoder, on the other hand, does the decoding on
demand, and only keeps a limited cache. The two plugins thus target different
platform types: the first is suitable for desktop/high-end systems, while the
latter is suitable for memory-constrained embedded systems. As opposite, the
ECMA plugin needs to decode and load each CIL file only once because it keeps
every information in memory.

The translation of CIL methods to IR is performed by an internal module
that converts the stack based CIL language to the register based IR language.

The layout manager computes and caches the memory size of each object
type, and provides this information to the runtime exception engine.

The ECMA-335 standard describes the CIL core libraries usable by the CIL
programs to perform their tasks. These libraries for the most part are imple-
mented in C# language as external libraries. ILDJIT currently uses the C# im-
plementation of these libraries developed within the Portable.NET project [16].
Some CIL methods (e.g. the methods in the System.Reflection namespace) have
to be provided by the virtual machine. We have implemented these methods
natively for performance reasons.

3.2 Optimizer

This module implements the optimisation phase for IR methods composing the
application. The software structure of this module is shown in Figure 6.

In traditional dynamic compilers, the time spent for code optimisation adds
to the total time needed for application program execution; this happens because
optimisation time does not overlap with translation and execution time. To

10

Figure 6: Class diagram of Optimizer module

avoid lengthy optimization of rarely executed methods, a dynamic compiler
needs an optimization policy to decide the best level of optimization of each
method undergoing translation. In ILDJIT too the problem exists but is less
critical, since the time spent by optimisers can be partially overlapped with the
translation and execution time, because such activities may run on different
PUs.

We have chosen to encapsulate the optimization policy decision inside the
policy module; currently we have provisions for eight optimisation levels: from
standard optimization like constant propagation, constant folding and dead-code
elimination to the last level, where all the optimisation algorithms implemented
inside ILDJIT system are used. The current policy works in the following way:
if the execution of the application code is waiting the translation of a method
(inside a trampoline), the method is placed inside the first optimisation level,
otherwise there is a heuristic to choose the right level, which is based on a back-
propagation neural network. The network was trained off-line using several
benchmarks.

Since the variety and number of possible optimisers are large and dependent
on application and on target hardware, we have chosen to implement them by
external plugins. The current release contains and the basic code transforma-
tions [3] [20] and the basic data flow analysis algorithms.

The IR methods to be optimised may reside on different machines connected
by an IP network or on different PUs’ connected by shared memories; in the for-
mer case we use the ONC RPC model for communication, [14] [18], in the latter

11

Figure 7: Class diagram of the IR virtual machine

we use simple, user-space, shared memories. The choice of the Inter Process
Communication (IPC) protocol is automatically taken by the policy module of
ILDJIT. Currently we have implemented and are evaluating the following policy.
If, when the choice is due, any PU is idle, it is assigned to run the IR optimizer
using shared memory as communication channel. Otherwise ILDJIT uses the
remote machine for the optimization task through ONC RPC communication
channel.

3.3 IR virtual machine

The IR virtual machine implements the entire virtual machine for our IR lan-
guage. Due to its complexity, the module is further divided into five submodules,
as shown in Figure 7: translating code from IR to machine language; manag-
ing the integration between different translation units; managing exceptional
behaviour in the executed code; initialising the static memory; fetching infor-
mation about IR data types and/or IR methods.

3.3.1 IR - Machine code translator

The IR→Machine code translator submodule translates a method from its IR
representation to the equivalent target machine code. This submodule is called
by the Pipeliner (see Section 3.4) module according to its policy.

The virtual machine relies on Libjit [17], a JIT compilation library, currently
available for x86 and Alpha, to provide the final steps of translation from IR
to machine code. IR was designed to be compiled as quickly as possible using
Libjit, or similar macroprocessing tools, thereby minimising the overhead of
translation to the target machine. Additional targets can be supported by re-
targeting Libjit. This module converts the IR method to the format required
by Libjit library, then exploits the API of this library to generate machine code.

All the classic optimizations available using the machine code [4] are per-
formed on this phase.

12

3.3.2 Execution engine

The Execution engine submodule is in charge of executing the machine code of
the application. It ensures that the execution of a method is stopped if it jumps
to another method not present in machine code. It implements this functionality
by trampolines (as explained in Section 2.4). Inside trampolines, the Execution
engine calls the Pipeliner to insert into the software pipeline the current method,
then waits till it exits from this pipe, thus indicating its readiness for execution.

As already explained, translation and the execution may run in parallel.

3.3.3 Exception manager

The exception manager module implements the mechanism to handle the ex-
ceptions thrown by method execution [9]. The implementation is based on long
jump machine code instructions.

3.3.4 IR information fetcher

This module provides functionality of fetching information about IR data types
and/or IR methods. There is a necessity of fetching these kind of information
for the IR methods optimizations; for instance, an in-lining optimization needs
information about another IR method rather than the current in analysis.

This module includes an RPC server because the Optimizer module (see
Section 3.2) can have necessity to fetch information on IR data types and/or
it can have necessity to fetch different IR methods (for example for in-lining
optimization purpose).

3.3.5 Static memory initializer

This module dispatches the code needed to initialise the static memory of the
application code. For example, if a program uses a static memory, then there
can be a CIL method for its initialisation (usually called cctor) which it has to
be called before the its first memory use.

In ILDJIT static memory is initialized just before the first use (lazy policy).
The translation of a CIL method Mi, which is the first one that dynamically uses
a static memory element, produces a list of other CIL methods, which are needed
for the initialisation of the element. These methods may be then translated to
machine code and executed by this module just before the execution of Mi.

Notice that the software pipeline (see Section 2.3) ensures that static memory
is always initialised before its first use.

3.4 Pipeliner

The Pipeliner internal module implements the pipeline model described in Sec-
tion 2. The model is organized by the threads depicted in Figure 8. As the
organization is rather complex, we first describe it in four subsections: in Sec-
tion 3.4.1 the algorithm for balancing the threads over the pipeline stages; in

13

Figure 8: The Pipeliner’s structure: in the middle four groups of boxes represent
four groups of threads, each one assigned to a compilation task; on the right,
the modules that implement the various compilation tasks

.

14

Figure 9: Histeretic pattern used for adaptation of thread numbers.

Section 3.4.2 the communication policy between the stages; in Section 3.4.3 how
the Pipeliner inserts a new method into the pipeline; finally in Section 3.4.4 the
calling convention for the Pipeliner module.

3.4.1 Threads balancing

The four groups of threads respectively implement the first four stages of the
pipeline (Figure 1), as shown in Figure 8. At any time, the number of threads
composing each stage of the pipeline is adaptively chosen, based on the cur-
rent machine load where ILDJIT is running, and on the pending compilation
workload to be supported. For each stage of the pipeline (except stage 4 static
memory initialisation), the number of threads range between a minimum and a
maximum; such values are set at bootstrap time. Then the Pipeliner dynami-
cally adapts the number of threads for a stage using the histeretic model shown
in Figure 9. The number of threads for stage i, 1 ≤ i ≤ 3 essentially depends on
how many methods are present in the stages from 1 to i.

On the other hand Stage 4 of the pipeline behaves differently from the others,
because limiting the number of threads may cause a deadlock. A situation that
causes a deadlock is the following: we consider a maximum number of threads
S for stage 4, we suppose there exist S + 1 CIL methods which initialise the
static memory and we suppose the call graph of the S CIL methods is a linear
chain. To better explain why a deadlock exist, here is reported the actions
performed by the system: ILDJIT starts putting the method M1 into the top
of the pipeline and then repeats the following actions S times:

• the method Mi goes through the pipeline till the static memory initializa-
tion phase;

• a thread of the fourth phase of the pipeline is allocated for executing all
the methods needed to initialize the static memory used by Mi;

15

• Mi uses a static memory which impose to execute the method Mi+1 before
its execution;

• the method Mi+1 is push on top of the pipeline synchronously (see Sec-
tion 3.4.4);

When ILDJIT put on top of the pipe the method MS+1, then there is no more
thread at the fourth stage.

As the above example shows, we cannot bind the number of threads of the
last stage of the software pipeline; for this reason we allow the number of these
threads increase as much as the compilation workload request.

3.4.2 Inter-thread communication

Communication between the stages of the pipeline is implemented by means of
FIFO software pipes residing in shared memory. Note the FIFO policy does not
guarantee that the methods enter and exit the pipe in the same order. This out-
of-order phenomenon is however irrelevant, since the Pipeliner does not make
any assumption on the ordering of the methods under translation.

3.4.3 New method insertion

The input to the Pipeliner is a method composing the application code.
The method should enter the pipe at a stage, depending on its translation

state (introduced in Section 2): for example, if the method is already in IR-
CODE state, the first stage is skipped. A method in CILCODE state has been
loaded, but not translated to IR. Therefore, it enters the FIFO channel for the
CIL threads. A method in state IRCODE has been translated to IR, but not
to machine code, and a method in MACHINECODE state is ready for execu-
tion. Methods in IRCODE state enter the FIFO channel for the IR optimizer
threads. Methods in MACHINECODE state enter the FIFO channel for the
Static memory initialisation threads. Methods in EXECUTABLE state bypass
the pipe to its end.

3.4.4 Calling convention

To translate a method, the Pipeliner can be called synchronously or asyn-
chronously; in the first case, control returns to the callee only when the method
is ready for execution. In the second case, the Pipeliner puts the method on the
right pipe, as explained in Section 3.4.3, and returns immediately to the callee.
Synchronous calls are performed by the Execution engine module of the IR
Virtual Machine 3.3.2 in order to translate methods that must be immediately
executed. Asynchronous calls are performed by the CIL→IR translator 3.1 for
methods that can bear a translation delay; if there are enough computational
resources, such methods too will be translated, since they are likely to be needed
soon (see Section 2.5).

16

3.5 Garbage collector

The garbage collector module provides a range of memory management func-
tionalities. The simplest service is to allocate portions of memory to programs
at their request, and to free them for reuse when no longer needed. A portion of
memory can be declared useless automatically or explicitly. Memory requested
to the garbage collector belongs to two sets: first, the memory requested for the
internal modules of the dynamic compiler; second, the memory requested by the
execution of the application program, which therefore contains only instances of
CIL classes. The two memory sets expose different characteristics. A chief dif-
ference is that, while the memory used for the internal modules of the dynamic
compiler can be freed explicitly by ILDJIT, the memory used for CIL objects
has to be automatically freed, without any explicit notification coming from
execution of the application. Such differences, as well as other ones, motivate
our split of the memory manager into two tasks, each one applying different
algorithms tuned to the different requirements.

Since a garbage collector can be implemented in many different ways, we
have implemented this functionality by external modules. An interface called
GarbageCollectorInterface exposes the methods that each garbage collection
plugin has to implement; such plugin can be used for both memory set, but two
heaps exists in any case for the two memory sets. The interactions between the
IR virtual machine and the garbage collector are bidirectional. The garbage
collector could have necessity of calling the VM for the following reasons:

• to request the computation of the root set [21];

• to retrieve the list of objects referenced by the one given as input;

• to check if an object can be moved from a memory location to another
one (there can be this kind of constraints on some objects [8]);

• to call finalizer methods for the objects marked as garbage by the garbage
collector itself.

These four tasks are demanded to the VM because the garbage collector does
not known:

• the stack frame of the methods to compute the root set; in fact only the
IR virtual machine knows this kind of information (see Section 3.3);

• the layout of the objects to compute the list of objects reachable at one step
by a generic object; in fact only the CLI manager knows this information
(see Section 3.1);

• how-to translate and execute a CIL method, in fact the execution of a
method can be performed only by the IR virtual machine (see Section 3.3).

All the memory references are given to the garbage collector by their refer-
ences because some collection algorithms needs to move objects over the heap
automatically managed [21].

17

Figure 10: Class diagram of the Garbage collector module for CIL objects

Because memory management greatly affects performances, we have four
garbage collectors, suited to different situations, as shown in Figure 10. The first
three are our implementations. MarkAndSweep implements the mark and sweep
algorithm [21]; Shifter is our implementation of the mark compact garbage
collector algorithm [21]; Copy implements the copying garbage collector algo-
rithm [21]; finally, Bdw is a wrapper for the garbage collector of Boehm, Demers
and Weiser [5]. The default configuration uses Bdw to manage the memory
needed by the internal modules of the dynamic compiler and the Shifter for the
instances of CIL classes.

4 Experimental evaluation

In this section we describe the experimental evaluation of ILDJIT dynamic
compiler giving the following information:

• The execution times spent by ILDJIT using one or two hardware cores.

• The profiling information of ILDJIT for each compilation task; this infor-
mation are needed to show where the system spends most of its time.

For this purpose we have chosen a set of single-thread benchmarks written
in CIL bytecode, because our primary goal is to show the speedup that has
been obtained implementing the VES virtual machine as a multi-threads system
organized in pipeline.

We have chosen the benchmark suite Java Grande, which is a set of programs
written using the C# language (hence translatable to CIL bytecode), part of
the Java Grande Forum Benchmark Suite [13] [10].

4.1 Experimental Platforms

We performed our experiments on the same two cores machine, enabling or
disabling a PU: Intel Core 2 Duo at 2.4 GHz, 2MB of L2 cache, 1GB of ram.

For the first experiment we use only one core of the machine. Since in this
case the machine does not offer hardware parallelism, some little overhead for
the execution of ILDJIT is confirmed as expected: in fact a multi-threads system
needs time for synchronization between threads, without taking much benefit
from parallelization.

18

Figure 11: Total execution time spent by ILDJIT to run the Java Grande bench-
mark suite; the speedup in the 2 cores hardware configuration is due to the
compilation phase overlapping done by the VM

For the second experiment we use two cores, which produce a significant
speedup of our dynamic compiler.

4.2 Experimental results

Figure 11 shows the execution time of ILDJIT running the benchmark suite.
All reported timings are median elements over 20 runs on an otherwise idle
machine. The execution time shown in Figure 11 diminishes by 26.634% on the
average, using two cores.

As Figure 12 shows, on a single processor machine ILDJIT spends most
of time executing the target machine code and optimising the IR methods.
Figure 13 shows that two cores are sufficient to overlap the translation time
for the Java Grande benchmark suite. It also show that for most of the time,
ILDJIT executes the application code.

The significance of these results is that ILDJIT succeeds in parallelizing
the compilation phases, as the translation and optimization phases overlap the
execution time and are not an additive term of the total time.

19

Figure 12: Time spent by ILDJIT over the compilation, optimization and ex-
ecution phases using a single core; the translation from IR to machine code is
less than 0.1%

20

Figure 13: Time spent by ILDJIT over the compilation, optimization and exe-
cution phases using two cores; the translation phases are less than 0.4%

21

5 Related Work

Two important related projects on parallel virtual machines should be men-
tioned.

In BEA’s JRockit [2] virtual machine the methods are compiled without
performing code optimizations for their first execution; the compilation are per-
formed by the same thread used to execute the application code, but there is a
parallel thread which has the task of sampling the execution, in order to trigger
method recompilation, increasing the optimization level.

In IBM’s J9 [19] as well as in Intel’s ORP [6] virtual machines there are
parallel threads to perform code compilation and execution tasks.

We believe the structure ILDJIT to be rather distinct from such projects,
and its use of parallelism and continuous optimization to be more aggressive.

6 Conclusions and future work

The work described is an important step towards exploitation of parallel dy-
namic compilation for parallel architectures such as the multi-core processors.
The experiments reported, albeit initial, give evidence of the advantages in terms
of reduction of initial delay and execution speed. Moreover since ILDJIT is a
young system, we expect forthcoming releases will perform significantly better.
ILDJIT is designed on a pipeline model for the translation and execution of CIL
programs, where each stage (CIL to IR translation, optimization, IR to native
translation, and execution) can be performed on a different processor. This
choice brings a great potential for continuous and phase-aware optimization in
the domain of server applications, as well as fast reaction times and effective
compilation on embedded multiprocessor systems.

Several interesting directions are open for future research. An important
future direction for research is the study of scheduling policies for method opti-
mization and the study of different threads schedule policies. Another objective
is to apply ILDJIT to multimedia application on embedded systems, includ-
ing performance scaling and resource management. From a technical point of
view, we are completing the implementation of the internal methods of the C#
core libraries, the support for application threads and we are adding other op-
timization algorithms. Finally, currently ILDJIT targets the x86 architecture.
In the future, support for other architectures, including ARM, co-processors
and VLIW processors, will be added to allow better experimental evaluation on
embedded multiprocessor systems.

Acknowledgement

This is a large multi-year project and several individuals have contributed or are
working on it, within the Formal Language and Compiler Group http://compilergroup.elet.polimi.it/.
In particular we would like to credit Andrea Di Biagio for exception handling,
and Ettore Speziale for his contribution to garbage collectors. Marco Cornero

22

and Erven Rohou of ST Microelectronics have corroborated our commitment to
free software development of dynamic compilation platforms.

References

[1] http://ildjit.sourceforge.net.

[2] Bea jrockit: Java for the enterprise technical white paper, 2006.

[3] Andrew W. Appel. Modern compiler implementation in Java. Cambridge
University Press, 2002.

[4] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transfor-
mations for high-performance computing. ACM Comput. Surv., 26(4):345–
420, 1994.

[5] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncoop-
erative environment. Softw. Pract. Exper., 18(9):807–820, 1988.

[6] Michal Cierniak, Marsha Eng, Neal Glew, Brian Lewis, and James Stich-
noth. The open runtime platform: a flexible high-performance managed
runtime environment: Research articles. Concurr. Comput. : Pract. Ex-
per., 17(5-6):617–637, 2005.

[7] Evelyn Duesterwald. Dynamic compilation. In Y.N. Srikant and Priti
Shankar, editors, The Compiler Design Handbook — Optimizations and
Machine Code Generation, pages 739–761. CRC Press, 2003.

[8] ECMA, Rue du Rhone 114 CH-1204 Geneva. Standard ECMA-335 Com-
mon Language Infrastructure (CLI), 3rd edition, June 2005.

[9] Nicu G. Fruja and Egon Borger. Analysis of the .net clr exception handling
mechanism. In Proceedings of the 2005 .NET Technologies Conference,
2005.

[10] Java grande forum. http://www.javagrande.org/.

[11] Chandra Krintz, David Grove, Vivek Sarkar, and Brad Calder. Reducing
the overhead of dynamic compilation. Softw., Pract. Exper., 31(8):717–738,
2001.

[12] Prasad Kulkarni, Matthew Arnold, and Michael Hind. Dynamic compila-
tion: the benefits of early investing. In VEE ’07: Proceedings of the 3rd
international conference on Virtual execution environments, pages 94–104,
New York, NY, USA, 2007. ACM.

[13] J. A. Mathew, P. D. Coddington, and K. A. Hawick. Analysis and devel-
opment of java grande benchmarks. In JAVA ’99: Proceedings of the ACM
1999 conference on Java Grande, pages 72–80, New York, NY, USA, 1999.
ACM.

23

[14] Mark Mitchell, Jeffrey Oldham, and Alex Samuel. Advanced Linux Pro-
gramming. New riders, 2001.

[15] B. Ramakrishna Rau. Levels of representation of programs and the ar-
chitecture of universal host machines. In MICRO 11: Proceedings of the
11th annual workshop on Microprogramming, pages 67–79, Piscataway, NJ,
USA, 1978. IEEE Press.

[16] Southern Storm Software. http://www.southern-storm.com.au. DotGNU
Portable .NET project.

[17] Southern Storm Software. http://www.southern-storm.com.au/libjit.html.
Libjit project.

[18] W. Richard Stevens. UNIX Network Programming: Volume 2. Prentice
Hall, 1999.

[19] Vijay Sundaresan, Daryl Maier, Pramod Ramarao, and Mark Stoodley. Ex-
periences with multi-threading and dynamic class loading in a java just-in-
time compiler. In CGO ’06: Proceedings of the International Symposium on
Code Generation and Optimization, pages 87–97, Washington, DC, USA,
2006. IEEE Computer Society.

[20] Alfred V.Aho, Ravi Sethi, and Jeffrey D.Ullman. Compilers Principles,
Techniques and Tools. Prentice Hall, 2003.

[21] Paul R. Wilson. Uniprocessor garbage collection techniques. In Proc.
Int. Workshop on Memory Management, number 637, Saint-Malo (France),
1992. Springer-Verlag.

24

	1 Introduction
	2 Execution model
	2.1 Translation unit
	2.2 Intermediate representation
	2.3 Compilation pipeline
	2.4 Linking
	2.5 Precompilation
	2.6 Optimizations

	3 Software architecture
	3.1 CLI manager
	3.2 Optimizer
	3.3 IR virtual machine
	3.3.1 IR - Machine code translator
	3.3.2 Execution engine
	3.3.3 Exception manager
	3.3.4 IR information fetcher
	3.3.5 Static memory initializer

	3.4 Pipeliner
	3.4.1 Threads balancing
	3.4.2 Inter-thread communication
	3.4.3 New method insertion
	3.4.4 Calling convention

	3.5 Garbage collector

	4 Experimental evaluation
	4.1 Experimental Platforms
	4.2 Experimental results

	5 Related Work
	6 Conclusions and future work

