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Abstract

The historical research line on the algebraic properties of structuréahgbiages initiated by McNaughton's
Parentheses Languages has recently attracted much renewed iniiérdst Balanced Languages, the Vis-
ibly Pushdown Automata languages (VPDA), the Synchronized Languagel the Height-deterministic
ones. Such families preserve to a varying degree the basic algebraierigs of Regular languages:
boolean closure, closure under reversal, under concatenatiorkleede star. We prove that the VPDA
family is strictly contained within the Floyd Grammars (FG) family historically knowmjpsrator prece-
dence. Languages over the same precedence matrix are known todx whaler boolean operations, and
are recognized by a machine whose pop or push operations on the gk ely determined by terminal
characters. We characterize VPDA's as the subclass of FG havinguéigrly structured set of precedence
relations, and balanced grammars as a further restricted case. Tloeunaing invariance property of FG
has a direct implication for VPDA too.

1. Introduction

From the very beginning of formal language science, research hagkd with the wish and need to
extend as far as possible the nice and powerful properties of regnzudges (specifically closure prop-
erties). A major initial step has been made by McNaughton with parenthesisrgnes [17], characterized
by enclosing any righthand side within a pair of parentheses; the alpisathet disjoint union of internal
characters and the pair. By considering instead of strings the stenkitletal trees encoded by parenthe-
sized strings, some typical properties of regular languages that dokiofion CF languages are still valid:
uniqueness of the minimal grammar, and boolean closure within the class obgeshaving the same
production stencils. Further mathematical developments of such ideas éerwgbrsued in the setting of
tree automata [20].

Several decades later, novel motivation arose for the investigatiorrefth@ses-like languages from the
interest for mark-up languages such as XML. Tdsanced grammarand languages [2] generalize the
parenthesis grammars in two ways: several pairs of parentheses aredalémd the right-hand side of the
grammar rules permit a regular expression over nonterminal and intgrmhabés to occur between match-
ing parentheses. The property of uniqueness of the minimal grammar &ywdsand the family has the
property of closure w.r.t. concatenation and Kleene star, that was misgiagantheses languages. Clearly
balanced as well as parentheses languages are closed undealrevers

Model checking and static program analysis provide an entirely diffénag-standing motivation for such
families of languages — those that extend the typical regular propertiesrtitérgiate pushdown systems.
To the best of our knowledge the seminal paper of this “new era” is [i¢hwbefinesvisibly pushdown
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automataandlanguagegVPDA), a subclass of realtime pushdown automata and deterministic corgext-f
languages. The input alphabet is partitioned into three sets named caliss ratal internals, and the deci-
sion of the type of move to perform (push, pop, or a stack neutral modetésmined by the membership
of the current input character; in other words the type of a move is solpiyt-triven. VPDA languages
extend balanced grammars in two ways that are important for modelling symbadjcan execution: they
allow parentheses to remain unbalanced to represent an execution stageseme procedures have not
returned, and a call symbol can be matched by two or more return symbapresent procedures with
multiple exits. For each partitioned alphabet the corresponding languagg fa closed under the regular
operations, including complement. VPDA's can be determinized and réyeoshices a VPDA with calls
and returns interchanged. We observe that the intended applicationsd@gigram analysis need closure
under reversal in order to compute the pre- and post-reachability sets.

Impulsed by this new approach, a variety of extensions and specializafitims original class have been
proposed and investigated. Among them, we mention the followingsyhehronized pushdown automata
[3], instead of the fixed 3-partition of VPDA's, use a finite transducer dedermines the type of move the
PDA must perform.

Theheight-deterministic automafa8] further extended the previous idea by considering the class 06PDA
characterized by the same integer-valued function returning the heighé atack for each input string;
within this approach the deterministic and the real-time cases are singled bat/fog richer closure prop-
erties. Last, thesynchronized grammaigl] are a more comprehensive model that uses an input-driven
pushdown transducer to decide the type of a move. Not surprisingly,rsace general models lose certain
nice properties of VPL, in particular the closure under reversal, ¢enation, and Kleene star.

Short after McNaughton’s results, we investigated similar closure piiep@fFloyd’s operator precedence
Grammars[12] ! (FG), an elegant precursor of LR(grammars, also exploited by one of us in his work
on grammar inference [6]. For any given precedence matrix a synesteacil is defined a priori for any
word that is generated by any FG having the same precedence matriariig éf such Floyd grammars
and the related languages are a boolean algebra [9]. We also exteadeatittn of non-counting regular
language of McNaughton and Papert [19] to the parentheses largjidgad to FG [8].

In this paper we resume the study of FG in the perspective of the cited grarahmatidels. We show that
VPDA is a special case of FG characterized by a very restricted steustihe precedence relations, thus
providing a new characterization of VPDA in terms of operator grammarghé&iurestrictions are shown
for the case of balanced languages. Then we compare FG with the hetghtathistic family showing
strict inclusion, and that reversal closure is lost by that generalization.

The paper is structured as follows: Section 2 provides the essentiatideBrof the main classes of lan-
guages (defined through automata and/or grammars) that will be combsidénés paper (others will be re-
ferred only on the basis of previous literature); Section 3 investigates theahinclusion relations among
them. Section 4 compares the same classes of languages w.r.t their claqegies. The conclusion
mentions that the non-counting invariance property of FG has a direct irtiplidar VPDA too and shows
that the whole picture of such language families deserves further analysmiswer a few remaining open
issues.

We propose to name thefloyd grammarsto honor the memory of Robert Floyd and also to avoid confusion with other
similarly named but quite different types of precedence grammars.



2. Basic definitions

We list the essential definitions of parentheses and balanced grammad8,, YiBight-deterministic
automata, and Floyd grammars. For brevity, other classes are not dafiredoecause they can be somewhat
put in relation with the above "basic” ones. They are nevertheless tateodnsideration in Section 4. The
same name is given to a class of devices (grammars or automata) and to tlof Hagsiages that can be
defined by means of them.

The empty string ig, the terminal alphabet 8. For a stringr and a lettew, |x|, denotes the number of
occurrences of letter, and extend the notation {o|, for a setA C X. Let first(x) andlast(z) denote
the first and last letter of + <. The projection of a string € ¥* on A is denotedra ().

The operators union, concatenation, and Kleene star are cafjathr. A regular expressiotis a formula
written using the regular operators, parentheses and charactera fpetified alphabet.

A Context-FreeCF grammar is a 4-tupl&é = (V, X, P, S), whereVy is the nonterminal alphabeP, the
production set, and the axiom. Arempty rulehase as the right part. Aenaming rulehas one nonterminal
as right part. A grammar isivertibleif no two productions have identical right parts.

A production has theperator formif its right part has no adjacent nonterminals, aneparator grammar
(OG) contains just such productions. Any CF grammar admits an equi@&nwhich can be also assumed
to be invertible [14]. N

For a CF grammat over?, the associateplarenthesis grammdf 7] G has the rules obtained by enclosing
each right part of a rule af within the parenthese§ ‘and ‘]’ that are assumed not to beih

A balanced grammaf2] is a CF grammar has a terminal alphabet partitioned hte X, U X;, where
Spar = {a,a,b,b,...} is a set oimatching parenthesemd the elements af; are namednternal. Let Viy
be the nonterminal alphabet. Every rule of a balanced grammar has th&ferruaa or X — «, where
a is a regular expression ovefy U 33;. The corresponding family is denoted BALAN.

A pushdown automatdPDA A over an alphabet is atupleA = (Q, 3, T, 4, qo, F'), where the initial state
qo € Q andF C (@ are the final stateqd! is the stack alphabet containing the stack bottom symbol. The
transition relation is

JCRxI'x(BUe)xQx (D\{L}H*

The notation [18pX % ¢a is equivalent tdp, X, a, ¢, o) € 0.

A PDA is calledrealtime(RPDA) if pX = ga impliesa # «.

A PDA is calleddeterministiqDPDA) if for everyp € Q, X € T'anda € ¥ U {¢} we have|{qa | pX >
ga}| <landifpX = gaandpX = ¢’/ thena = ¢

A realtime deterministi@utomaton is denoted RDPDA.

The setI™ is the set otonfigurationsof a PDA, withinitial configurationg,_L.

Thelabelled transition systemenerated by is the edge-labeled directed graph

Qr* L, U BN

ac¥X U {e}

Given a stringw € ©*, we writepa == ¢ if there exists a finitev’-labelled pathy’ € (X U {e})*, from
pa to g3, andw is the projection ofv’ ontoX. Notice that according to [18] the’-labelled path includes
transitions of the type=.

An A is completdf Yw € ¥*, g9 L = qa.

The languageecognizedy A is L(A) = {w € ¥* | goL = pa, p € F}

A PDA A is normalized[18] if

1. Ais complete;



2. forallp € Q, all rules ind of the formpX % ga either satisfye € ¥, or all of them satisfys = «,
but not both;
3. every rule iry is of the form

e pX % g
o pX % gX
e pX % qY X wherea € X U {e}

For a normalized PDA moves are namgashif |a| = 2, popif |a| = 0, and internal ifjo| = 1. The
normalization preserves the characteristics of DPDA, RPDA and RDPDi&aie

Height-determinism

Letw € (XU {e})*. The setV (A, w) of stack heightseached byA after readingv is {|a| | go L ==
gaL}. A height-deterministi®DA (HPDA) is a PDA that is normalized and such thil{ A, w)| < 1 for
everyw € (X U{e})*.
The families of height-deterministic PDA's, DPDAs, and RDPDA's (and laaxges) are resp. denoted by
HPDA, HDPDA, and HRDPDA.
A normalized DPDA is an HDPDA and the language families HPDA and CF coiritRle
Two HPDAs A; and.A, over the same alphabEtare in the equivalence relatidtrsynchronizeddenoted
by A; ~g Az, if N(Ay,w) = N(Az, w) foreveryw € (X U {e})*.
Let [A]., denote the equivalence class containing the HRDAnd A — HPDA denote the class of
languages recognized by any HPDA H-synchronized with

Visibly pushdown automata

A visibly pushdowr{VP) [1] alphabet is a 3-tup|§ = (2., %, X;), with ¥ the disjoint union of the
three sets. Elements of the three sets are resp. teralisdreturnsandinternal letters. AVP automaton
VPDAisaPDAA = (£,Q,q, 1,0, F), wheres is a VP alphabet. The transition relation is

FC@xTexQx(T\{L}) U (@x%,xTxQ) U (Qx%xQ)

that can be readily seen to specialize the previous definition for a gdétiesal

Floyd grammars

The definitions for operator precedence grammars, here renBlogd GrammargFG), are from [9].
(See [13] for a recent presentation.)
For a nonterminal of an OGG, theleft and right terminal setare

Lo(A) ={aeX | A>S Baa) Rg(A) ={a €| A= aaB}

whereB € Vy U {¢} and= denotes, as usual, a derivation. The two definitions are extended tlackt
nonterminals and to a stringge V' via

Lo(W) = | ] La(A)andLa(B) = Lo (D)
AeW

whereD is a new nonterminal an@’ is the same a&' except for the addition of the productidn — 3.
Finally £ (€e) = 0. The definitions fofR are similar.
For an OGG, leto, 5 € (Vy U X)* anda,b € X, three binary operator precedence (OP) relations are

defined:
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equal precedence:  a =biff 3A — aaBbS, B € Vy U {e};
yields precedence: a>b iff 3A — aDbB, D € Viy anda € Rg(D)
takes precedence: a<b iff 3A — aaDS, D € Vy andb € L5(D);

For an OGG, the operator precedence matrfOPM) M = OPM(G) is a|X| x |X| array that to each
ordered paif(a, b) associates the séf,;, of OP relations holding betweenandb. Given two OPM’sM;
andM,, we define
My C My <~ M17ab - M2,ab7 M=MUM; < My = Ml,ab U M2,ab;vaa b.
G is aFloyd grammarFG if, and only if, OPM (G) is aconflict-freematrix, i.e.,Va, b, |(OPM (G)q| < 1.
Two matrices areompatibleif their union is conflict-free.
A FG is in Fischer normal form [10]f it is invertible, the axiomS does not occur in the right part of any
production, and there are no renaming productions, except those wigatef (if any).

For the reader convenience the acronyms are collected in the table:

BALAN balanced grammar

CF context-free

DPDA deterministic pushdown automaton

FG Floyd grammar

HDPDA | height-deterministic deterministic pushdown automaton
HPDA height-deterministic pushdown automaton

HRDPDA | height-deterministic realtime deterministic pushdown automaton
oG operator grammar

OPM operator precedence matrix

REG regular language

RDPDA | realtime deterministic pushdown automaton

RPDA realtime pushdown automaton

PDA pushdown automaton

VPDA visibly pushdown automaton

3. Containment relations

First we recall some of the relevant known [1, 18, 16, 4] containmdatioes between some recent
language families, then we position FG within the picture. The main strict incluai@ns

REG Cc BALAN Cc VPDAC HRDPDA = RDPDA C HDPDA = DPDA

Notice that the above inclusions preserve the structural properties d@rigaages: for instance if the
partition of a VP alphabet places a letteipand therefore associates a push move to it, the corresponding
HDPDA automaton too performs a push move on that letter.

The first [3] and second [5] family of Caucal, as well as the one of FisamahPnueli [11] fall in between
VPDA and DPDA. but lack of space prevents a detailed presentation.

Next we focus on FG languages. It is well-known tika& € DPDA. On the other hand, FG includes
non-realtime deterministic languages suchlas= {a”b"c"d™ | m,n > 1} U {a™bTed™ | m > 1}.
Observing that.y = {a"ca™ | n > 0} is in HRDPDA but not in FG, since, by an elementary application
of the pumping lemma, this would imply a precedence conflict, we have:

Proposition 3.1. The families of FG and HRDPDA languages are incomparable.
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Our main result is that the VPDA languages are a well-characterized bpas@eof FG languages. First we
give a construction from a VPDA to a FG having a certain type of preaaderatrix, second we construct a
VPDA for any FG with such matrices. At last we include also BALAN in the malrdsed characterization.
We need to analyze the structure of VPDA strings. A stringdnr}* is well parenthesized it reduces to

e via the cancellation ruler — .

Let p be the alphabetical mapping from. U 3, U 3; to {c, r} defined byp(c;) = ¢,V¢; € X, p(r;) =
r,Vr; € 3., andp(s;) = €,Vs; € ¥;. A non-empty stringr € X* is well balancedif p(y) is well
parenthesized,; it izell closedif in addition first(x) € 3. andlast(z) € %,.
LetA=(Q,%,Q,q,T,6,Qr) beaVPDA, witht = X, UX, UX,;.

Lemma 3.2. Any stringz € L(.A) can be factorized as
T = ycoz OF x = y, With ¢y € X, such that

1.y = wwivgws ... upwy, k > 0, whereu; € (X; U X,)*, andw; € ¥* is a, possibly missing,
well-closed string;

2. z = V1C1V2Cy . . . Cr_1 Uy, r > 0, wherec; € ¥. andv; € ¥* is a, possibly null, well-balanced
string.

Proof Letthe transitions from staigto ¢’ be labelled as follows{r, 1) denotes a move of typpe, r, L,q’) €

5-; (r, Z) denotes a move of tyfe, r, Z, ¢') € 6, with Z # 1; £ denotes a move of tyge, ¢, ¢, Z) € d.;

s denotes a move of tyfe, s, ¢’) € ds.

We examine the possible sequences of moves of a suitable ¥Bi2Afor convenience is non-deterministic
(determinization is always possible [1]). We only discuss the gaseycyz, since the case = y is simpler.
The computation starts with a series of move$(in L) | s}*, which scan the prefin; and leave the stack
empty.

Then the machine may do a series of moves to scan atringrhe first move is of typg-. The move is
possibly followed by a nested computation scanning a well-balanced stridgatdast by a move of type
(r, Z;). The effect is to scan a well balanced strimg. Clearly the nested computation may also include
internal moves.

After scanningu, the stack is empty, and the computation may sgamand so on, untity, is scanned.
Alternatively and non-deterministically, when the stack is empty, the machinpenform a mov@%, thus
entering the phase that scans stringWe denote ag&;; a symbol written on the stack, which will never be
touched by a subsequent pop move. In other wagdis, nondeterministically assumed to be an unmatched
call.

Then thez phase non-deterministically scans a well balanced sttingThen, again nondeterministically,
it may perform a movez-. Then it may scan another well balanced striig and so on, ending with a
stack inLZy ™.

At any time, when the machine enters a final state, it may halt and reeotii@izcanned input.

Clearly stringy is the longest prefix such that the accepting computation ends with empty Stack.
simplicity, without loss of generality, we assume that no transition enters the si#ta;;. For convenience
we shall denote by a subscripted letfghe states traversed while scannin@nd by a subscripted lettgr
the states traversed in the computatior@f. The state set is thus partitioned iffo= {go} U Q, U Q).

Since VPL'’s are CF languages, previous papers (e.g. [21]) haveuatsd grammars to define them,
but such grammars are not OG or have precedence conflicts; inste@tesent a construction producing a
grammar with the required properties.



Theorem 3.3. For any visibly pushdown automatot a Floyd grammarG such thatL(G) = L(.A) can
be effectively constructed.

Proof First we construct the grammar, then we prove that it is an FG, and lastlyitlis equivalent tqA4.

Grammar construction
The productions are keyed to the factorization of Lemma 3.2 and are listediesTh, 2, 3, and 4. The

scheme of a sample syntax tree produced by the grammar, for a stringZedtas in Lemma 3.2, is shown
in Fig. 1.

Figure 1: Schema of a syntax tree generated by the precedence graomstructed in Theor. 3.3.

Z:c E7‘ Ez
Yol < | =<
Yol > > >
Yil>| > >

Figure 2:Total VP precedence matrix/r.

Nonterminals of clas§” generate a string such that the automaton, parsing it, starts and ends with
empty stack. Nonterminals of classes, B; derive a well-balanced (but not necessarily well-closed) string.
Nonterminals of clasg derive a string such that, starting with a non-empty stack of the to@‘g, the
stack never pops d;; and at last contains a string JJan]r :

The nonterminal symbols of the grammar are denoted by a pair of states) or (p;, p;), or by a triple
(¢i, Z,q5) or (ps, Z,p;), with Z € T. Intuitively, a nonterminal of the generic forfm; ...r;) generates
a terminal stringu if, and only if, there is a computation of the machine from the left state the right
stater; which reads the same string and never modifies the initial stack. Furthemooterminalsg;, ¢;)
leave the stack unchanged; nontermin@lsp;) at most increase the number 8f;’s; and nonterminals
(¢, Z, q;) or (p;, Z, pj) denote that the computation starts and ends witin the top and generates a well-
balanced terminal string.

To construct the productions we examine the transitions of the VPDA. In felaws, calls, returns and
internal characters are respectively denatedands; Z, W are stack symbols different fromh. Notice
that the grammar constructed may be not reduced (i.e. some nonterminal rnayelaehable from the
axiom or it may not derive any terminal string). In that case the uselegemoinals and productions can
be removed by well-known algorithms (e.g. in [15]).



Table 1: Productions of the axiom.

case transitions productions
S —YeoZ | 6(gisco) > (pj: Zu) S — (g0, gi)co(pj, ps), Vpy € F
S—Y S — (qo,qf), Vg5 € F
S —Ycy | (g co) > (ps.2Zu) pr€F S — {qo, gi)co
S—coZ | 6(q0,c0) > (pj, Zv) S — colpj, pr) Vps € F
S — ¢ d(qo,co) > (py, Zu), py € F S — ¢

Table 2: Productions of nonterminals of clasgderiving the maximal prefix ending with empty stack).
case transitions productions
Y —s (g0, 5) > gi (90,q) — s
Y —>r 0(qo,7, L) 2 g (qo,qi) —
Y—Ys | das)2q (90, 45) — <<J0,qz‘>3
Y —Yr 6(gi,m L) 2 g (90, 95) — (a0, q)7
Y —cBr | d(qo,c) > (¢, Z) andé(q,m, Z) > an | (g0, an) — c(at, Z, qi)r
Y —er 0(qo,¢) > (qt, Z) ando(qe, v, Z) > qn | {qo,qn) — cr
Y = YeBr | 6(gi¢) 3 (g5, Z) andd(gm, 7, Z) 3 qn | (g0, an) = {90, ¢:)¢(qj5 Z, gm)7
Y - Yer 3(gi c) 3 (¢4, 2) andé(qm,r Z) 3 qn | (qo,qn) — (qo, qi)er

andg; = g,

Table 3: Productions for nonterminals of claséasand B2, generating well-balanced string. (The cd@&gjust differs with respect
to the state set, which i§,, instead ofQ),.)

case transitions productions
B — BceBr | 0(gi,¢) 3 (g5, Z) andd(gm, 7, Z) 2 gy (¢, qn) = (9,49)¢(q5, Z, qm)7, ¥q € Qq
B — Ber | 6(qi¢) 3 (g5, Z2) andd(g;,m, Z) 5 an | (4:qn) — (@, @i)er, Vg € Qq
B — ¢Br 8(gi,c) > (g5, 2) andé(qm,r Z)3 qn (Qisqn) — (@5, Z, qu)7
B —ecr 9(gi,c) 2 (g5, Z) andd(q;, 7, Z) 2 qn (Gisqn) — cr,¥q € Qq
B — BeBr | 4(gi,c) 2 (QJa Z) and(S(qm,r Z) 3 qn (@, W, qn) — <q7Qi>C<Qja Z, qm)r,

Vge Qqy,W el
B — ¢Br 8(gi,c) > (g5, Z) andd(gm, 7, Z) 3 gn (@ W,an) = c(qj, Z,qm)r,Vq € Qq, W €T’
B — Ber 3(gi,c) > (g5, Z) andd(qj,r, Z) 3 qn (@ W,aqn) = (g, qi)er, Vg € Qq, W €T
B—Bs | d(qn,s) 2 am (@ W, am) — (¢, an)5, Vg € Qq, W €T
B—s 5(qj,5) 2 am (45, Z,qm) — s, YW €T

G is a Floyd grammar

By construction all the productions are in operator form. To verify thabgherator precedence matrix
M is conflict-free, it suffices to compute the relevant terminal sets the matrilegnising the previous
8



Table 4: Productions for nonterminals of cldss

case transitions productions

7 —cZ d(pi,c) 3 (pj, Zv) (pi,pr) — C<p],pf> Vpr e F

Z—c (pisc) 3 (py, Zu),pr € F (pi,pg) —

Z — BeZ | 6(pj,c) 2 (pn, Zv) (p,py) — <p Pi)cphspy), Vs € Fip € Qp
Z — BC | (pj,c) 2 (ps, Zu),py € F (p;py) — (P pj)C

Z — BeBr | 6(pisc) 3 (pj, Z) andd(pm,, Z) 3 pn | (p,Df) — (p,pi)c(pj, Z, pm)T,

Vp € Qp,pr €F

Z —cBr | d(pisc) 3 (pj, Z) andd (P, 7, Z) 3 p | (Pispf) — c(js Z,pp)7, Vof € F
Z — Ber | d(pisc) 3 (pj, Z) andd(p;, 7, Z) 3 pn | (p,pr) — (pspi)er,Vp € Qp , Vpp € F
Z —cr d(pi,c) 2 (pj, Z) andd(pj,r, Z) > pn (pi,pf) — cr,¥p € Qp,pf € F
7 — Bs d(pj,s) dpppp € F (p.pf) — <p P;)s, Vp € Qp
( (p:p

P =

Z — s 0(pj, s

definitions. It should be enough to show one case.
For the production{qo, ¢n) — (90, i)c{q;, Z, gm)r the setRa({qo, ¢;)) C ¥; U X, produces the relations
s>c,r>c. The setsCq((¢j, Z,qm)) € X U X, Ra((g5, Z, gm)) C X; U X, determinec<c, c<s and
s>r,r>r; the right part of the production gives=r. Thus we obtain a conflict-free matrixt'’ C M
whereM is the total matrix in Fig. 2.

Fig. 3 reproduces the string of Fig. 1 with precedence relations betvaeaadters that are consecutive
or separated by a nonterminal.

Proof thatL(G) = L(A)

It is obtained by a fairly natural induction showing the double implication betvesenputations and
derivations. It is structured into several “macro-steps” mirroring tbfézation introduced in Lemma 3.2.
We develop in detail only a sample of the various cases, since the othesimdes.

1. (g, 1) % (g5, 1) <= (a,qj) = (3, UX)*.

2. (¢;,0) % (¢j,0) <= (¢,q;) = =, v € ¥* and well-balanced.
3. (pi,0) % (pj,0) <= (pi,pj) = =, x € ¥* and well-balanced.
4. (pis LZ5) = (pj, LZG™) <= {pipj) = ™

5.Vy €%, Z, (pi, LyZ) v (pj,LyZ) (without ever popping?) <= (pi, Z,p;) = w, wherew is a
well-balanced string.
Induction base:
@) 6(pisc) > (P Z) NO(pgs 1, Z) 2 pr = Wt (pi, W, pj) — er
(b) d(pi,s) 2 p; < IW : (p;, W,pj) — s
From the inductive hypotheses:
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Figure 3: Precedence relations between characters during the pafriiggstring of Fig. 1. The dummy string delimitérs— by
hypothesis respectively yield and take precedence over any othaictéra

Di, J_")/W) 'i) (ph7J—7W) — <pz7ph> :*> T,r € X

T

Phy LAW) = (pg, LW Z)

c

pth—’YWZ) }i) (pT‘aJ—’YWZ) — <ptazap7“> :*> w1

w1

Pry LYW Z) = (pj, LyW)

(@)
(b)
()
(d)

we derive:

o~ o~ o~ o~

(pis LAW) = (pj, LAW) = (i, Wopj) = w,w = zcwr (1)

Special cases, such as= ¢ and many others, can be similarly treatedN.B. Each inductive proof of the
various assertions may exploit other assertions in the inductive stepsisknce the inductive hypothesis
(a) above is based on assertion 3.

A natural question is whether every FG defines a VPDA language or not.

Theorem 3.4. The VPDA language family is strictly included in the FG family.
Proof The language
L={b"c" |n>1}u{f"d" |n>1}u{e"(fb)" |n>1}

is a FG language but not a VPDA languagdeis generated by the FG grammar
S—A|B|C A — bAc | be B — fBd| fd C —eCfb|efb
which has precedence relatiofs:

b=c,f=d,e=f, f=00b<b f<f e<e,c>c,d>d,b>f

From b™c™ C L it follows b must be a call and a return. For similar reasonsf must be a call and a
return. Frome™(fb)" C L it follows that at least one dfand f must be a return, a contradiction for a VP
alphabet.
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FG with a partitioned precedence matrix

We prove that the OPM structure obtained in the proof of Theor. 3.3 idfigisut condition for an FG
to generate a VPDA language thus obtaining a complete characterizatiorb#{ &a subclass of FG.
For an alphabeX, let M be an OPM such that there exists a partitiortahto three subsets, >» and,
Y3 satisfying the conditions:

Va € ¥1,Vb € ¥1 U X3 : Myla,b] = < andVa € ¥1,Vb € Xy : Mp[a,b] = =.

Va € Yo,V € X : MT[CL,b] =>

V(LEEg,VbEE:MT[a,b]:> R

Then My is termed aotal VP-matrixrepresenting the VP alphabBt = (31,39, 33) = (X, 2., X5),
shown in Fig. 2. Any OPMV/ C M7 is termed &/P-matrix

Observe that, for any gramméf, such thaD PM (G) is a VP-matrix, any productioA — « has|a|y < 2.
The possible stencils (or skeletons) of the right parts of the productiedé@aV, NcNr, Nr, N s, and those
obtained by erasing one or mak& Notice that the stencilsV, cr N are forbidden becausedoes not yield
precedence to any character. It follows that, for any FG having a VHAxtite length of any right part is
< 4.

Theorem 3.5. LetG be an FG such thaD PM (G) is a VP matrix. Ther(G) is a VPDA language.

Proof First we argue that the grammar generates any strind {&') with a syntax structure corresponding
to the factorization presented in Lemma 3.2. Then, in Lemma 3.6, we cdresW&DA equivalent td-.
Let G satisfy the hypotheses of Theor. 3.5. For every stiirg L(G), the syntax tree induces the factor-
ization

T = Yycoz or T=Y,Y = UIWIUW?2 ... UpWE, Z = V1CIV2C2 . ..Cr_1Up

where all terms are as in Lemma 3.2, and its syntax tree has the structowensh Fig. 1. It suffices to
consider that the precedence relations of the VP matrix completely deteth@rskeleton of the syntax tree
(see Fig. 3).

Lemma 3.6. LetG = (X, Vv, P, S) satisfy the hypotheses of Theor. 3.5. THgfyr) is recognized by a
VPDA automatomd = (X, @, Qo, ', 4, Qr), which can be effectively constructed.

Proof We specify how to construct from the grammar productions a VRDEat recognizes by final state
and for convenience is nondeterministic. We recall the production stemeijgst the ones previously listed.
We set) = Vy U {qo,p, qr}, Whereq, p, qr ¢ V. The pushdown vocabulary is

L= ((VyU{-})xZex (VwU{-}))U{L Zu}

Intuitively, A is built in such a way that it enters a stake € Vyy after finishing the scanning of a substring
syntactically rooted inB.
In state B, reading a symbat € X, (the only ones that yield precedencd)enters state and pushes on
the stack a symbol, for which two cases occur. The symidgljdf the ¢ is not to be matched by an it
is (B, ¢, C), if the machine “looks for” a well-balanced string such thatC' = w. Simpler special cases
also occur, such thatl pushes on the stack a symiél, ¢, —) or (—, ¢, —), “looking” directly for r.
In statep, reading ac, A remains in the state and pushes on the stack either the syfhibthe c is not to
be matched, or a symb¢k-, ¢, C) if it “looks for” a string w such thatC' = w.
Finally we describe the moves that reade 3. If the stack is empty, the machine enters a stéte
associated to a nonterminal. If the top of stack is a syniBok, C), the machine pops the stack and enters
a stateA. Here too some simpler special cases exist.
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The final states set is defined@s = {A | S = BA, A # S} U {qr} U {q iff S — ¢ € P}. Notice that
a productionA — ¢B can be used only in a derivation such.8is> oA = acB = z, otherwise: would
take precedence over some other character. THuEnd B are both inQ z.

Table 5: Transition relation of A.

productions 0
1| A—s (qo, s, A)
A — r, such thats = (qo,7, L, A)
A«
2| A—s (p, s, A)
A — Bs (B, s A)
A — Br (B,r, L, A)
3| A—cB (p,c,p, Zur)
S — BceC (B,e,p, Zu)
41 S— BeCr (B,c,p, (B,c,C))
(C,1,(B,e,C),ar)
S—s (40,5, qF)
S—c (q0, ¢, Zu, qr)
S—r (90,7, L,qr)
A — BceCr (B,c,p, (B,c,C))
(.7, (B,e,C), A)
A — Ber (B,c,p, (B ¢, —))
(v, (B,c,—), A)
5| A— cBr (p,c,p, (— ,c,B))
(B,r,(—,¢,B), A)
A—ecr (p,c,p, (—¢,—))
(B,r, (~, ), A)

The transition relatiors is then built fromP according to Table 5. Notice that the derivatiofis> Aa
needed in section 1 of the table can be effectively computed.
The proof of the equivalendg(A) = L(G) somewhat mirrors the equivalence proof of Theor. 3.3. For
instance, from section 2 of Table 5 the following lemma immediately descends:

ASwwe (Z,U%,) <= Joe (T\{L})* teQ suchthatt, J_o) (A, Lo)
Similarly, the lemma
A = w,w well balanced <= Jo € (I'\ {L})*,t € Q such that(t, Lo) (A, Lo)
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can be proved by a natural induction, taking as the basis the casescr and A — s, and then exploiting
for the induction steps sections 2, 4, and 5 of Table 5. Further details ofrtod pre omitted as fairly
obvious.

Second, we remark that various subclasses of VPDA languagesglyeoemsidered correspond to restric-
tions on the VP-precedence matrix and/or on the stencils of the grammarcpoodu A nice illustration is
the family BALAN [2]. First, balanced grammars do not allow anyor r; to be unmatched. Thus an FG
such that no production has the stencdilg; N, N¢;, ¢; N, ¢;, Nr; ensure the balancing property. Second,
balanced grammars do not allow:ato be matched by distinct returms, r;, (and similarly forr;). An FG
such thaiX.| = |X,| and the OPM submatrix identified by rols, and columngZ,,; contains= only on
the diagonal, ensures the bijection of call and return characters.

4. Closure properties

All families considered here (except DPDA) share the property of bietrudean algebras, for suitably
defined subsets. The core of the property dates back to the originalaappby McNaughton and the
"structure preserving” operations as in [9]. Other closure propeptissessed by VPDA, though relevant
and classical, have been less investigated. It appears that all theusréioilies more general than VPDA
lack (or are unknown to have) some closure properties, as shown iethé&ble.

| family [ boolean operations \ concatenation, star | reversal |
VPDA [1] || yes for a fixed VP alphat yes for a fixed VP alphabet yes
bet
FG yes for compatible prece- probably yes yes (proved here
dence matrices [9]
HRDPDA || yes for H-synchronized no [4] no (proved here)
languages [18]

The reversal of a FG language is generated by the specularly rdyesductions; they are a FG grammar
with a matrix obtained interchanging yield- and take-precedence relations.

We observe that the boolean closure of FG languages has been prg9¢by extending McNaughton’s
method for parentheses languages. It states that the union of two F@ leawipatible precedence matrices
is a FG language with compatible matrices, and similarly for the other operat@soiée that this is
not implied by the closure property [18] of the equivalence class of htisonized HDPDA languages,
although two FG’s having compatible matrices are necessarily H-syncerBniz

On the other hand the closure of VPDA languages for a given VP alphatier the boolean operators and
under reversal, are an immediate consequence of the same propertiesamhilly of FG languages having
compatible precedence relations,

Since HRDPDA=RDPDA, the non-closure under reversal follows feoalassical counterexample, used
for proving the same for deterministic languages: the reversfl@fb™ | n > 0} U {2a"b*" | n > 0} is
non-deterministic.

The proof of concatenation and star closures for FG’s is more intricatevtith other traditional families
of CF grammars due to the need to preserve the operator structure amedbdgnce relatiors.

In conclusion, the FG family is currently the one, among the existing VPDArgénations, that preserves
the majority, and possibly the totality, of VPDA closure properties.

2For brevity we omit the natural construction of the HDPDA equivalent tGagFammar.
3A complete proof is under development.
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5. Conclusions

We mention some open questions raised by the present study.

FG appears at present to be the family that preserves the majority, asidlpdise totality, of VPDA closure
properties, but we wonder whether more general families can be foithdh& same properties.

In a different direction, it is possible to transfer to VPDA a rather surpgigwariance property of FG.
We recall the definition oNon-Counting context-fregrammar [7], which extends the notion of NC regular
language [19].L = L(G) is NC if for the parenthesized languagéG), the following condition holds:
dn > 0: Vx,v,w,v,y € 3%, v!herew andvwv are well-parenthesized, antn > 0, xv"wuv"y € L if,
and only if, zo"t™wy™ ™y € L. In general, two equivalent CF grammars may differ with respect to the
NC property. However if an FG grammar is NC, then all equivalent FG gramara NC [8]. Consider
now, for a VPDAL C ¥*, two equivalent VPDA recognizers. Notice the two VP alphabets may dhiiibr
respect to the 3-partition of the letters. The two corresponding FG'0fT8e3) may differ in precedence
relations, but they are either both NC or both counting. We wonder whstioérinvariance property holds
for other families of grammars generalizing VPDA.

Last, it would be interesting to assess the suitability of Floyd languages faptileations that have
motivated balanced grammars and VPDA. We observe that the greateatyeneapacity of FG’s permits to
define more realistic recursively nested structures. For instance, tbé ¥pproach uses single characters
to represent a calt and the corresponding returt) but this is just an abstraction. In real programming
languages a call is a string typically containing the name of the invoked proee@ad possibly a list of
parameters. Also, at it is suggested by the example in the proof of Thea B4urn corresponding to a
given call may use the same characters as some other call. This will caufietsdn the partitioning of
¥, but can be dealt with by suitable precedence relations. Similar exampldseedannd in the area of
mark-up languages.

Finally, for application in model checking, the computational complexity of theéstEn problems for FG
languages should be studied.
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